Intermolecular epistasis shaped the function and evolution of an ancient transcription factor and its DNA binding sites
نویسندگان
چکیده
Complexes of specifically interacting molecules, such as transcription factor proteins (TFs) and the DNA response elements (REs) they recognize, control most biological processes, but little is known concerning the functional and evolutionary effects of epistatic interactions across molecular interfaces. We experimentally characterized all combinations of genotypes in the joint protein-DNA sequence space defined by an historical transition in TF-RE specificity that occurred some 500 million years ago in the DNA-binding domain of an ancient steroid hormone receptor. We found that rampant epistasis within and between the two molecules was essential to specific TF-RE recognition and to the evolution of a novel TF-RE complex with unique derived specificity. Permissive and restrictive epistatic mutations across the TF-RE interface opened and closed potential evolutionary paths accessible by the other, making the evolution of each molecule contingent on its partner's history and allowing a molecular complex with novel specificity to evolve.
منابع مشابه
Regulatory network structure determines patterns of intermolecular epistasis
Most phenotypes are determined by molecular systems composed of specifically interacting molecules. However, unlike for individual components, little is known about the distributions of mutational effects of molecular systems as a whole. We ask how the distribution of mutational effects of a transcriptional regulatory system differs from the distributions of its components, by first independent...
متن کاملBiophysical Fitness Landscapes for Transcription Factor Binding Sites
Phenotypic states and evolutionary trajectories available to cell populations are ultimately dictated by complex interactions among DNA, RNA, proteins, and other molecular species. Here we study how evolution of gene regulation in a single-cell eukaryote S. cerevisiae is affected by interactions between transcription factors (TFs) and their cognate DNA sites. Our study is informed by a comprehe...
متن کاملMapping of Transcription Factor Binding Region of Kappa Casein (CSN3) Gene in Iranian Bacterianus and Dromedaries Camels
κ-casein is a glycosilated protein in mammalian milk that plays an essential role in the milk micelles. Control of κ-casein expression reflects this essential role, although an understanding of the mechanisms involved lags behind that of the other milk protein genes. Transcriptional regulation, a first mechanism for controlling the development of organisms, is carried out by transcription facto...
متن کاملMapping of Transcription Factor Binding Region of Kappa Casein (CSN3) Gene in Iranian Bacterianus and Dromedaries Camels
κ-casein is a glycosilated protein in mammalian milk that plays an essential role in the milk micelles. Control of κ-casein expression reflects this essential role, although an understanding of the mechanisms involved lags behind that of the other milk protein genes. Transcriptional regulation, a first mechanism for controlling the development of organisms, is carried out by transcription facto...
متن کاملIn silico investigation of lactoferrin protein characterizations for the prediction of anti-microbial properties
Lactoferrin (Lf) is an iron-binding multi-functional glycoprotein which has numerous physiological functions such as iron transportation, anti-microbial activity and immune response. In this study, different in silico approaches were exploited to investigate Lf protein properties in a number of mammalian species. Results showed that the iron-binding site, DNA and RNA-binding sites, signal pepti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2015